首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28786篇
  免费   2140篇
  国内免费   3527篇
  2024年   45篇
  2023年   380篇
  2022年   526篇
  2021年   781篇
  2020年   883篇
  2019年   1101篇
  2018年   979篇
  2017年   824篇
  2016年   850篇
  2015年   900篇
  2014年   1374篇
  2013年   1724篇
  2012年   1024篇
  2011年   1304篇
  2010年   1054篇
  2009年   1373篇
  2008年   1451篇
  2007年   1536篇
  2006年   1412篇
  2005年   1326篇
  2004年   1142篇
  2003年   1074篇
  2002年   1008篇
  2001年   832篇
  2000年   818篇
  1999年   728篇
  1998年   659篇
  1997年   589篇
  1996年   626篇
  1995年   597篇
  1994年   553篇
  1993年   586篇
  1992年   531篇
  1991年   502篇
  1990年   402篇
  1989年   349篇
  1988年   337篇
  1987年   290篇
  1986年   259篇
  1985年   285篇
  1984年   299篇
  1983年   169篇
  1982年   224篇
  1981年   183篇
  1980年   149篇
  1979年   102篇
  1978年   103篇
  1977年   57篇
  1976年   54篇
  1975年   25篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
Early environment influences later performance in fishes   总被引:1,自引:0,他引:1  
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life‐history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life‐history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.  相似文献   
2.
3.
The efficient aquisition of nutrients from leaves by insect herbivores increases their nutrient assimilation rates and overall fitness. Caterpillars of the gypsy moth (Lymantria dispar L.) have high protein assimilation efficiencies (PAE) from the immature leaves of trees such as red oak (Quercus rubra) and sugar maple (Acer saccharum) (71–81%) but significantly lower PAE from their mature leaves (45–52%). By contrast to this pattern, both PAE and carbohydrate assimilation efficiencies (CAE) remain high for L. dispar larvae on the mature leaves of poplar (Populus alba × Populus tremula) grown in greenhouse conditions. The present study tests two alternative hypotheses: (i) outdoor environmental stresses cause decreased nutrient assimilation efficiencies from mature poplar leaves and (ii) nutrients in the mature leaves of trees in the poplar family (Salicaceae) remain readily available for L. dispar larvae. When poplar trees are grown in ambient outdoor conditions, PAE and CAE remain high (approximately 75% and 78%, respectively) in L. dispar larvae, in contrast to the first hypothesis. When larvae feed on the mature leaves of species in the Salicaceae [aspen (Populus tremuloides), cottonwood (Populus deltoides), willow (Salix nigra) and poplar], PAE and CAE also remain high (68–76% and 72–92%, respectively), consistent with the second hypothesis. Larval growth rates are strongly associated with protein assimilation rates, and more strongly associated with protein assimilation rates than with carbohydrate assimilation rates. It is concluded that tree species in the Salicaceae are relatively high‐quality host plants for L. dispar larvae, in part, because nutrients in their mature leaves remain readily available.  相似文献   
4.
A partial swine cDNA which encodes the functional domain of PIT-1 was isolated by the polymerse chain reaction (PCR). The swine PIT-1 cDNA clone is 95% identical at the protein level to the rat Pit-1 gene. Thus, Pit-l's known function in control of rat growth hormone and prolactin expression is likely to be conserved in swine. This swine cDNA clone was used to investigate genetic variability at PIT-1 in several American and Chinese breeds. Polymorphic BamIII fragments were found in pure-bred Meishan animals (n= 13), but only monomorphic fragments in five American breeds (n= 36).  相似文献   
5.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   
6.
Collagenous and non-collagenous proteins (NCPs) in the extracellular matrix, as well as the coupling mechanisms between osteoclasts and osteoblasts, work together to ensure normal bone metabolism. Each protein plays one or more critical roles in bone metabolism, sometimes even contradictory, thus affecting the final mechanical, physical and chemical properties of bone tissue. Anomalies in the amount and structure of one or more of these proteins can cause abnormalities in bone formation and resorption, which consequently leads to malformations and defects, such as osteoporosis (OP). The connections between key proteins involved in matrix formation and resorption are far from being elucidated. In this review, we resume knowledge on the crosstalk between collagen type I and selected NCPs (Transforming Growth Factor-β, Insulin-like Growth Factor-1, Decorin, Osteonectin, Osteopontin, Bone Sialoprotein and Osteocalcin) of bone matrix, focusing on their possible involvement and role in OP. The different elements of this network can be pharmacologically targeted or used for the design/development of innovative regenerative strategies to modulate a feedback loop in bone remodelling.  相似文献   
7.
《Journal of morphology》2017,278(2):215-227
Unlike most viviparous vertebrates, lamniform sharks develop functional teeth during early gestation. This feature is considered to be related to their unique reproductive mode where the embryo grows to a large size via feeding on nutritive eggs in utero. However, the developmental process of embryonic teeth is largely uninvestigated. We conducted X‐ray microcomputed tomography to observe the dentitions of early‐, mid‐, and full‐term embryos of the white shark Carcharodon carcharias (Lamniformes, Lamnidae). These data reveal the ontogenetic change of embryonic dentition of the species for the first time. Dentition of the early‐term embryos (∼45 cm precaudal length, PCL) is distinguished from adult dentition by 1) the presence of microscopic teeth in the distalmost region of the paratoquadrate, 2) a fang‐like crown morphology, and 3) a lack of basal concavity of the tooth root. The “intermediate tooth” of early‐term embryos is almost the same size as the adjacent teeth, suggesting that lamnoid‐type heterodonty (lamnoid tooth pattern) has not yet been established. We also discovered that mid‐term embryos (∼80 cm PCL) lack functional dentition. Previous studies have shown that the maternal supply of nutritive eggs in lamnoid sharks ceases during mid‐ to late‐gestation. Thus, discontinuation of functional tooth development is likely associated with the completion of the oophagous (egg‐eating) phase. Replacement teeth in mid‐term embryos include both embryonic and adult‐type teeth, suggesting that the embryo to adult transition in dental morphology occurs during this period. J. Morphol. 278:215–227, 2017. © 2016 Wiley Periodicals,Inc.  相似文献   
8.
After significant injury, the liver must maintain homeostasis during the regenerative process. We hypothesized the existence of mechanisms to limit hepatocyte proliferation after injury to maintain metabolic and synthetic function. A screen for candidates revealed suppressor of cytokine signaling 2 (SOCS2), an inhibitor of growth hormone (GH) signaling, was strongly induced after partial hepatectomy. Using genetic deletion and administration of various factors we investigated the role of SOCS2 during liver regeneration. SOCS2 preserves liver function by restraining the first round of hepatocyte proliferation after partial hepatectomy by preventing increases in growth hormone receptor (GHR) via ubiquitination, suppressing GH pathway activity. At later times, SOCS2 enhances hepatocyte proliferation by modulating a decrease in serum insulin-like growth factor 1 (IGF-1) that allows GH release from the pituitary. SOCS2, therefore, plays a dual role in modulating the rate of hepatocyte proliferation. In particular, this is the first demonstration of an endogenous mechanism to limit hepatocyte proliferation after injury.  相似文献   
9.
This paper deal with a model of optimal foraging in a habitat with arbitrary food distribution. It takes into account an arbitrary risk cost related to the distance to the animal's nest. Food acquisition and risk cost are accounted for in common units of fitness. The resulting problem is solved in the context of Calculus of Variations. The optimal duration of absence from the nest and the optimal spatial allocation of foraging time are obtained: the optimal strategy leads to separate the habitat into a region to exploit and a region to ignore. The definition of these two distinct regions depends on the relative importance of risk and food availability. With realistic risk costs, the resulting strategy indicates a highly selective behaviour when far from the nest, as observed in field studies. The model is also extended to take account of the need of returning to the nest to guard it or to feed the young.  相似文献   
10.
《Journal of morphology》2017,278(10):1412-1420
This study compares sand shiner (Notropis stramineus ) and silverjaw (Ericymba buccata ) minnows, in terms of the morphological shape changes of the upper, lower, and pharyngeal jaws over ontogeny. These two species of minnows initially feed on midge larvae and undergo an ontogenic prey shift. The traditional morphometrics measured—total length, snout‐to‐vent length, eye diameter, premaxilla length, lower jaw length, gape—were regressed onto total length to test for allometry. Digital pictures were processed with tpsDig and further analyzed with MorphoJ utilizing a regular geometric morphometrics procedure using principle component analyses. We examined gut contents for 16 fish of each species. For the silverjaw minnows, we found all jaw variables to exhibit positive allometric growth with increasing total length, while most of the jaw variables for the sand shiner exhibited negative allometric growth with increasing total length. This correlates with an ontogenic prey shift for both species. Sand shiner minnows have been found to be more omnivorous, feeding on algae later in life, while silverjaw minnows undergo a prey shift to larger invertebrates. These species lack oral dentition causing an increased reliance on the pharyngeal apparatus. Principle component analyses revealed elongation of pharyngeal jaw elements in the silverjaw minnows and a relative shortening and bulking of pharyngeal jaws in the sand shiner minnows. The ontogenic dietary shifts observed in these two species provide possible explanation for the morphological changes over ontogeny in jaw elements, which are likely enabling these species to occupy the same habitat with little niche overlap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号